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We develop exact field-theoretic methods to treat turbulence when the effect of pressure is negli-
gible. We find explicit forms of certain probability distributions, demonstrate that the breakdown of
Galilean invariance is responsible for intermittency, and establish the operator product expansion.
We also indicate how the effects of pressure can be turned on perturbatively.

PACS number(s): 47.27.—i

Turbulence is an old and tantalizing subject. Enor-
mous amounts of data and ideas have been accumulated
during this century and still the problem is not solved. In
our opinion, the reason lies in the fact that the necessary
field-theoretic tools have appeared only recently.

Two years ago an attempt was made to apply the
methods of conformal field theory to the case of two-
dimensional turbulence [1]. The main concepts of this
work were the following. First, one looks at the steady-
state condition, which relates the equal time, N-point,
and (N + 1)-point functions. Then one argues that in
the inertial range these relations can be solved exactly
by field theories satisfying fusion rules or operator prod-
uct expansions (OPE). There appeared to be infinitely
many solutions. An additional constraint on these solu-
tions follows from the constant flux conditions.

It has been noticed (although not really exploited)
in [1] that there exists a striking analogy between the
constant flux states in turbulence and axial (and other)
anomalies in quantum field theory. The latter are vio-
lations of the naive conservation laws caused by the ul-
traviolet regularization. In the case of turbulence the
ultraviolet regularization arises from viscosity and re-
sults in an energy flux through the inertial range. When
the steady-state condition with these two tools was ana-
lyzed it appeared that the third ingredient was needed.
Namely, the physical correlation functions contained so-
called condensate terms, which were § functions in the
momentum space and represented the large-scale motions
of the fluid. Their role was to cancel infrared divergencies
that arose from the field-theoretic fluctuations. The pre-
cise form of these terms depends on the large-scale region
where the energy is pumped into the system. The task
of joining the inertial range with this region remained
unsolved in [1].

It is highly desirable to have an exactly soluble model
in which the above ideas can be tested at work. In this
paper we will discuss such a model, which also is of in-
dependent physical interest. The model in question is
simply the Navier-Stokes equation with white noise ran-
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dom force and with the pressure set equal to zero. In one
dimension this is known as the Burgers equations.

Such equations have been exploited in the past in many
different physical situations (like galaxy formations [2],
crystal growth [3], etc.). Recently they were the subject
of deep mathematical investigations [4].

In a remarkable paper [5] some striking numerical data
concerning Burgers turbulence were obtained and an ap-
pealing qualitative picture of the phenomenon has been
proposed. This work to a large extent inspired my inter-
est in turbulence without pressure. Another important
work in this area is the recent paper [6] on which I shall
comment later.

In the present paper we shall formulate a general new
method for analyzing the inertial range correlation func-
tions, based on the ingredients mentioned above (OPE
and anomalies). The method with minor modifications
is also applicable to the problem of advection of passive
scalars and other cases. It is obvious that the ideas we
develop below will become a part of the general theory
of turbulence. They may also have a considerable “back
reaction” on the field theory.

Let us start with the one-dimensional case. The Burg-
ers equation has the form

Ut + UUy = VUge + f(mt)

< f(z,t)f(z',t') = sz — )6t -¢t). (1)

Here the function x defines the spatial correlation of the
random forces. Consider the following generating func-
tional:

Z(Mz1| - |AneN) = <expz )\ju(xjt)> . (2)

From (1) we derive
. 1o} 1 07
2 g, (55m,)

= Z Aj <[f(xjt) + vu'] exp E /\ku(a:kt)> . (3
The first term in the right-hand side is easy to treat since
the force f(zt) is Gaussian and we can use the standard
trick [7] of the theory of Langevin equations:
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<f(:ct) exp ,\ju(mjt)> =S w@—z)NZ . (4)

Our equation takes the form

. 7] 1 07
(5)

By D we denote the dissipation term:

D=v3Y A <u"(1:jt) exp > /\ku(:tkt)> . (6)

If the viscosity v were zero our task would be completed
since we have a closed differential equation for Z. To
reach the inertial range we must, however, keep v in-
finitesimal but nonzero. The anomaly mechanism men-
tioned above implies that infinitesimal viscosity produces
a finite effect, whose computation is one of our main ob-
jectives. First, however, let us transform and interpret
the inviscid equations (5) (dropping the D term).
Let us introduce the function F' given by

Z =A1---ANF(Aiz1--- AnzN).- (7
We have
. 52 -
F+) pre v > k(@i —z;)M\F=D. (8)
Here,
P D

Iy

We can now introduce the Fourier transform F =
F(uizy ---unzyN), which satisfies:

82 -
.7-'+Zuk————.7-' > w(@i-= 8%8“]7_73 9)

obtained from (8) by the substitution A = 2
The function F has a simple meaning. It can be inter-
preted as

= (0(urzy) - - - O(unzN)), (10)

where 0(urzr) = 0(ur — u(zit)) and the last 6 is a step
function. In order to get the N-point probability distri-
bution Z one has to differentiate F according to (7):

aN

In = Ouy ---Oun

FnN- (11)
We supplied here our correlation functions with the sub-
script NV to indicate the number of points on which these
functions depend.

Of course, Eq. (9) could have been obtained directly
by computing the time derivative of the @ field. It is also
easy to express the Dy term through Fx4i. By using
(6) we obtain
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w_ 9 9
F —Va—?/z/UQdan—%fN+1(uO,$j

+y;u1,$1""LLN,$N) I'y—>0 . (12)

Equations (9) and (12) give a chain of relations remark-
ably similar to the Bogoliubov-Born-Green-Kirkwood-
Yuon (BBGKY) equations of statistical mechanics [7].
One can hardly hope to solve these equations exactly.
But we are interested in the inertial range, which means
that we have to take the limit » — 0. We will show now
that in this case the system of equations closes and gives
us an equation for turbulent kinetics, much in a same way
as the Boltzmann equation becomes exact in the limit of
small densities.

The main ideas of the derivation are the following. For
the large Reynolds numbers, corresponding to small v
there are two relevant scales. The first, L, is defined by
the size of the system and provides an infrared cutoff.
The second, a <« L, is the scale at which dissipation
becomes relevant. The ratio % goes to infinity together
with the Reynolds number. By the existence of the in-
ertial range we mean the conjecture that the correlation
functions F have a finite limit at zero viscosity, provided
that we keep z; — z; fixed. They can have singularities
at coinciding points, which must be understood as be-
ing smeared by the viscosity at the scale a. In fact, this
scale is determined by the condition that as we let v go
to zero, dissipation remains finite. This means that we
have to find the leading singularity in (12) as y — 0,
and compensate for it by an appropriate scaling of v(y).
All subleading terms will give a vanishing contribution
in the inertial range (in the limit of the infinite Reynolds
numbers). The task of finding the leading singularities is
precisely what the OPE was developed for.

However, we should warn the reader that what follows
is essentially a self-consistent conjecture. In the case of
statistical mechanics, when deriving hydrodynamics from
the BBGKY equations it is necessary to assume the de-
crease of the correlations [7], a self-consistent assumption
that is difficult to prove from first principles. In our case
this property is replaced by the OPE.

To understand how they work, let us reexamine the
derivation of the previous equations. They were based on
the fact that modulo the stirring force and the viscosity
we have a sequence of conservation laws:

Dm0 (13)

(the = sign here means that we do not write terms coming
from the viscosity and the stirring force).

Equations (5) and (9) can be interpreted as rela-
tions for the generating functionals (u™ (z1) - - - u™* (zg)).
They involve both the stirring force and the viscosity.
The former was already accounted for, while the latter
presents a problem. The main rule of the game is that
in any equation involving space points separated by the
distance larger than a viscosity can be set to zero. Thus
it is perfectly legitimate to use the inviscid limit for n=1,
because in this case we exploit the steady-state condition:
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gi(u(zl) ceu(zn))y =0, |z —x; > a. (14)

However, starting from n = 2 we have a problem, since in
this case we have to take time derivatives of the product
of u’s at the same point. To circumvent this problem in
the case of n=2 let us make the following replacement:

18

T dt 2
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uz(z)=>u(w+g)u(a:—g),lwi—xj I>y>a

(15)

and let y — 0 after the viscosity is taken to zero. In this
case the use of the inviscid equations is justified, but we
will get an anomaly in the conservation law, due to the
point splitting. We have after simple algebra:

4 [u (:1: + _?{) u (z - %)] ~ Ea—h[uz(xl)u(a:z)] +(1le2)= ;%u:‘(m) +ao(z), T12=z % g (16)

Here we have introduced the first dissipative anomaly operator:

S VECN O R U S S TR Y
ao(m)—ygl})Gay ulz+ 5y 5Y) | -

(17)

In deriving this formula we set y to zero inside all terms containing the = derivative. This is possible because all the
correlation functions have a finite z-dependent limit at zero y. We also used the identity:

S (- D] dal (02 e (-2 - B

The anomaly would be zero if u(z) were differentiable,
since then the right-hand side (RHS) of (17) is ~ y2.
However, the steady-state condition dictates the oppo-
site. Indeed, one of the consequences of Eq. (5) is that
in the steady state,

d

2 (%) = 5(0) = (a0) = 0, (18)
and hence we have the famous Kolmogorov relation:

([u(zy) — u(wz)]3> x k(0)(z1 — z2). (19)

The value of the anomaly defines the limiting contribu-
tion of the viscous term in the steady state:

,l,i_lﬂy vu(z)u" (z) = —ao(z).

An interesting feature of this relation is that it defines
the expectation value of the ag anomaly self-consistently
from the steady-state equation. This feature is preserved
for the higher anomalies of the u™ densities. They are
necessarily nonzero, because after a point splitting pro-
cedure we get terms ~ %[u(z + %) —u(z — ¥)]* and the
steady-state equation will determine their value.

With a certain amount of vulgarization one can say
that the reason for the 4™ anomalies is that shock waves
absorb not only energy, but these higher densities as well.

Before computing the general anomaly let us discuss
carefully all the limiting procedures involved. As we
see correlation functions depend on the parameters £(0)
= g, L (which defines the correlation length of the forces)
and the viscosity v. We made an assumption that as
we let the viscosity go to zero correlation functions have
a finite limit and hence depend only on € and L. This

limit is what is meant by the inertial range. The stan-
dard Kolmogorov assumption (which we do not make) is
that the Galilean-invariant correlation functions, such as
([u(z1) — u(x2)]™) have a finite limit as L — oo. As we
will see in our case this statement does not hold. Instead
we have to make a different assumption, consistent with
our equations. We will call it the G (Galilean) assump-
tion.

To formulate it let us notice that Galilean invariance
in our system is spontaneously broken. This is evident
from the fact that pumping forces create a certain average
velocity vrms = 4/(u?). At the same time unbroken G
symmetry would require that the probability distribution
be invariant under v = u+const.

It is easy to estimate the value of v.s. In the limit of
zero viscosity the only possible formula is

VUrms ~ K3 (0)L3 ~ 3 L3, (20)
In the A representation this breakdown means that

Y~ L (21)

VUrms

This absence of G symmetry makes the anomaly compu-
tation difficult. Fortunately it is consistent with Eq. (3)
to assume that if we formally tend L — oo and keep JA;
finite, then G symmetry is restored. We conjecture that
in this limit,

Z(Mz1; - Anen) o« 8 (Z ,\k) . (22)

This is the G assumption and a short check shows that it
is consistent with Eq. (3). To state this assumption in a
slightly more physical way, we can say that the probabil-
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ity distributions of velocities, W (ujzy - - - unzn), which
are Fourier transforms of the Z functions, have the fol-
lowing structure:

W(uizy -+ unzy) = w(u; — uj; %) Wa (Z “’°> . (23)

rms

provided that

s — w5 |[< D we (24)

This last condition is very important. It is easy to see
that without it the separation of the center of mass ve-
locity that occurred in (23) would contradict Eq. (5).

The G symmetry greatly simplifies computations of the
anomaly. However, one more self-consistent assumption
is needed. This is an assumption of the existence of an
operator product expansion or the fusion rules. To for-
mulate it we introduce the following notations:

Z(--) = (ex(21) - -ean (2n))
ex(z) = exp Au(z). (25)

The fusion rules is the statement concerning the behavior
of correlation functions when some subset of points are
put close together. We conjecture that in our case the
rules have the form

€ (:c + %) €x, (m -~ g) = A(A1, Az, y)ex, +2, (T)

0
+B(A1,A2,y) §g Crr+re
+0(y?). (26)

We will call this statement the F' conjecture. Here A and
B are some functions to be determined and the meaning
of (26) is that they control the fusion of the functions
Z into functions Z_; as we fuse a couple of points to-
gether. To find the result one has to substitute (26) into
(25). Of course one must check that this conjecture is
consistent with Eq. (5), which is also supposed to deter-
mine functions A and B. To make this equation effective
we have to evaluate the following anomaly operator:

ay(z) = 1111_1)1}) v[Au" (z) exp Au(z)], (27)

which appears on the right-hand side. As we explained
above, a)(z) is generally nonzero, because smallness of v
is compensated by the blowup of u”(z + y) exp Au(z) as
y — 0. In fact we can write

a,\(a:) =

. &
o 8y < (F T VIA®) (2%)

and exploit the F' conjecture to evaluate the RHS of (28).
Thus, ay(z) should be expressed in terms of derivatives
of the functions A and B. If the result is finite it must
have the form

ax(z) = a(N)ex(z) + B(A)%e,\(w), (29)

which is the only possible G invariant expression, involv-
ing the ultraviolet finite operators e(z) and u'(z). In
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order to have a finite limit in (28) one has to set the cut-
off values of y and { to be dependent on v and A. This is
not surprising, since } defines the local Reynolds number
and the ultraviolet cutoff must depend on it. It is also
worth stressing again that this form of the anomaly is
correct only in the Galilean-invariant limit. For generic
A; we would obtain a superposition of exponents with
different A, a rather difficult situation to treat.

The master equation (5) now takes the form (for the
steady state)

_ o o
5= (5 -00) 5
= k(@ —z) NN Z

=Y "a())Z, B =B+ % (30)

It is now a simple matter to check our F' conjecture.
If we introduce the variables

$1,2=~”Big, A=A14+ A2, p=A1 — Ay,

and keep y much smaller than all other distances, we find
the following structure of the operator H:

Hy =Hy_1+F,

9?2 1o}
F= 26_2;9‘; - [B(A1) —ﬁ()\z)]a—y
+ (800 = 31800 + 801 57 (31)

Here the operator Hy_; is obtained from Hpy by re-
placing the points x;, with the point  and A;, with
A = A1 + A2. From this we derive equations for the func-
tions A and B that appear in (26):

(Vi— Vz)%—f = %[ﬂ(’\l) + B(A2)] = B(A1 + Az),
(Vi— Vz)%:} = (A1) + a(A2) — a(Ar + A2), (32)

Here,

d
V= 55— B0

These equations have solutions for any functions o and
B. The next step is to substitute these solutions back
into Egs. (28) and (29) and try to find constraints on o
and (. Surprisingly the arising constraints are very weak
due to the possibility to adjust the cutoffs, and thus the
functions a and B in (29) remain almost arbitrary. In
principle they must be determined from the conditions
that all probability distributions have admissible behav-
ior at oo, much in the same way in which eigenvalues are
usually determined. Since we do not have any general
methods for treating this problem we will simplify the
matter even more by introducing a scaling conjecture (S
conjecture) that again turns out to be self-consistent. To
formulate it let us notice that if £ <« L we can expand
k(z) = k(0)(1 — f;—) and in (30) the constant part x(0)
drops out due to the G invariance:
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Z K,(.’l:,' — :I:j)Ai)\j = K,(O) (Z Ai)z + O(-'L'z)a (33)

Z,\,-zo.

Therefore it is natural to look for a scaling solution with
A~ % The scaling condition determines the possible
form of the functions a and (3. In order to conform to
scaling, they must be as follows:

B(A) = —;, a(A) = a.

We will see now that scaling is self-consistent, although
one can also try more general solutions, say with loga-
rithmic terms.

Let us see how the unknown numbers a and b are deter-
mined from the eigenvalue problem. For example, con-
sider a two-point function. The master equation in this
case takes the form

(— - 2—b> —Z +p*y*Z = aZ. (34)

For reasons to be clarified later we are interested in the
case a = 0. Our S conjecture amounts in the ansatz:

Z(p,y) = 2(py). (35)

Here we temporarily use the units in which «(0) = 1 and
L = 1. The function ®(x) satisfies an ordinary differen-
tial equation:

z®"(z) + (1 — 2b)@'(z) + z2®(z) = 0. (36)
The general solution of this equation has the form
&(z) = 2"Fy (327), (37)

where F) is one of the Bessel functions. The right func-
tion and the value of b are determined from the condition
that the probability distribution

c+ioco d
w(u,y):/ . 2—7%_Z(u,y)e—ﬁ“‘ (38)

must be positive and vanish as u — Zoo. From the
convergence of (38) it follows that we must choose

®(z) biK%b(—%l'%). (39)

Positivity of Z for £ > 0 and its finiteness at * = 0 forces
us to take b = % for which case:

®(z) = exp %x%. (40)

As a result we obtain the following result for the proba-
bility to have a velocity difference u at the distance y:

c+ioco d s
w(u,y)=/ _ ﬁeXP[%(uy)i—W]- (41)

The positivity of w is guaranteed by the fact that Z sat-
isfies certain convexity conditions. Indeed, from the re-
lation

2w = [ wiwer >0

—0o0
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we derive, by using the Cauchy inequality,
+
Z(u1)Z(uz2) > 2* (——pl 5 MZ) ) (42)

which is clearly satisfied. It is mathematically curious
that the u representation the Eq. (34) is easily reduced
to the Schrédinger equation with the potential V(u) =

% — 2bu. This is achieved by the change:

Z(p,y) = (1)*°F (1, y),

which removes the % term in the Eq. (34) and by the

Fourier transform to the function F(u,y) = y2b‘1¢(§).
The power of y here is needed for consistency with (35).
The value of b corresponds to the zero energy eigenvalue
in this potential and ¢ is proportional to the ground-state
wave function [9].

The probability distribution defined by (41) has the
following asymptotic behavior:

_L(g)ﬂ, w

e sty if ¥ 5 400,

w(u,y):{ s _s .. 3 (43)
Yyzu~ 2 1f;—)—-oo.

This qualitatively fits the observations [5]. It must be
stressed, however, that some caution is needed when com-
paring the G invariant part of the probability distribu-
tions with the experiment. As we have already said, the
factorization (24) breaks down at large velocities. That
means, in particular, that in general w(u,y) has the fol-
lowing structure:

(u,9) ulL u Y
w(u,y) = i — =) -
’y X vrmsy,vrms’L

The scaling limit, discussed above is reached only when
two conditions are satisfied:

Y K Lju < Vrms-

When computing the moments of the probability distri-
butions, which represent correlation functions, it may
happen that even when the first condition is enforced,
the second one will be violated. In this case the result
is not universal, since the behavior of probabilities at
U ~ Upms depends on the correlations of the stirring forces
at x ~ L.

We come to the conclusion that the breakdown of
Galilean invariance leads to a rather peculiar structure of
the correlation functions. They contain in general both
universal and nonuniversal parts. The former comes from
the distribution (43) and its generalization for an arbi-
trary number of points. The latter results from the region
of the large velocities. These nonuniversal correlations
are just the “condensates” introduced in Ref. [1]. The
formula (43) shows that due to the “power tail” all the
expectation values of (u™) starting with n = 3 are for-
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mally divergent. That simply means that they are dom-
inated by the nonuniversal region and thus change if we
change x(z) for z ~ L. At the same time, the moments
with n < % are universal. The power tail in the formula
(43) must be related to the probability of having a kink,
introduced in Ref. [5]. However, the precise connection
is not completely clear, since the nonuniversal part may
be relevant in the comparison.

We come to the conclusion that at least in the
present setting the violation of the naive scaling
for higher moments—the phenomenon usually called
“intermittency” —is due to the breakdown of Galilean
symmetry and nonuniversality of the large velocity fluc-
tuations. In the past “intermittency” essentially meant
that the theory sometimes works and sometimes does not.
Here we have it under control. This observation explains
an apparent discrepancy between the scaling in the Eq.
(41) and Kolmogorov’s relation (19). These two come
from the different regions of the phase space. This is
evident from the fact that the value of x(0) which en-
ters into Kolmogorov’s relation (19) simply drops off in
the G-invariant limit, as seen from (33). For the different
type of the stirring forces considered in [5] the two regions
seem to overlap. That forms the basis for the beautiful
physical picture advocated in [5]. It is also consistent
with the approximate solution of the Burgers problem
found by the replica method in [6].

In the above solution we took ¢ = 0. Our under-
standing of other possible solutions is still incomplete,
although it seems that for the considered type of stirring
forces an attempt to take a # 0 leads to some unphysical
results, like having (u(xz1) — u(xz)) # 0. However, for a
different type of stirring force that leads to different scal-
ing laws we almost certainly have to include the a term.
This question is currently under investigation [8].

Finally, let us present the generalization of the mas-
ter equation for arbitrary dimensionality. In the inviscid
limit is not difficult. Consider the following quantity

05 = p(x’t)eXE(a:,t),

where p and ¥ are the density and the velocity, satisfying
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the Euler equations:
p+ 0a(pva) =0,
Plia + (v898)va] = fa-

It is straightforward to verify by the same methods that
led to Egs. (5) and (9) that the correlation function of
the © 5 ’s,

F =F(X1,£1,XN£N)5

satisfies the following equation:

. 0*F
Z X7 Z o (Zi i) AiaXjpF,
which generalizes Eq. (8) for an arbitrary dimension. As
in one dimension the origin of this equation lies in the
special conservation laws analogous to (13). In general
we have the following set of conserved tensors:

Tal'”an = PUay " " Vay,

which satisfy a continuity equation.

The next step should be an analysis of anomalies along
the same lines as above. This task is not completed yet.
Another immediate problem is to include the pressure
as a small perturbation. This is possible by using the
relation

p(Z) = O3(%) 3= -

This relation allows us to express the perturbations of
pressure and density in terms of the function F'. However,
this analysis is also a problem for the future.

I am deeply grateful to V. Borue for useful discussions,
A. Migdal and V. Yakhot for sharing with me their in-
sights, results, and enthusiasm concerning turbulence,
and to D. Gross for his important critical remarks on
physics and style of this paper. My special thanks are
due to D. Makogonenko for invaluable encouragement
and support. This work was partially supported by the
National Science Foundation under Contract No. PHYS-
90-21984.

[1] A. Polyakov, Nucl. Phys. B396, 367 (1993).

[2] Ya. Zeldovich, Astron. Astrophys. 5, 84 (1972).

[3] M. Kardar et al., Phys. Rev. Lett. 56, 889 (1986).

[4] Ya. Sinai, J. Stat. Phys. 84, 1 (1991).

[5] A. Chekhlov and V. Yakhot, Phys. Rev. E 51, R2739
(1995); (to be published).

[6] J. Bouchaud et al. (unpublished).

[7] E. Lifschitz and L. Pitaevsky, Physical Kinetics (Perga-
mon, New York, 1981).

[8] A. Migdal, A. Polyakov, and V. Yakhot (unpublished).

[9] A. Migdal informed me that earlier he was able to find this
wave function directly from the Schrodinger equation.



